Модели учета среды на распространение сигнала

На задержку радиосигналов в атмосфере оказывают влияние ионосфера и тропосфера.

Модель учета ионосферной задержки радиосигналов

Ионосферная задержка исключается при использовании измерений на двух частотах, что выполняется для всех радиотехнических средств измерений в космической геодезии, путем составления так называемой ионосферно-свободной комбинации измерений:

$$O_{iono-free} = \frac{f_1^2 O_1 - f_2^2 O_2}{f_1^2 - f_2^2}$$

где O_1 и O_2 – наблюдения на частотах f_1 и f_2 соответственно.

Модель учета тропосферной задержки радиосигналов

Учет тропосферы радиодиапазоне сводится к вычислению зенитной гидростатической задержки по модели Саастомойнена по метеоданным, а также картирующих функций влажной и гидростатической тропосферных задержек и атмосферных градиентов по данным направления на источник.

Гидростатическая зенитная задержка вычисляется по формуле Саастамойнена:

$$Z = 0.0022768 \times \frac{p_0}{(1 - 0.00266 \cos(2\phi) - 0.00028H)}$$

где p_0 – атмосферное давление в миллибарах, H – высота пункта в километрах, ϕ - широта.

Коэффициенты сухой и влажной картирующих функций тропосферной задержки вычисляются по венской модели.

Общий вид картирующих функций следующий:

$$M_i(e) = \frac{1 + \frac{a_i}{1 + \frac{b_i}{1 + c_i}}}{\sin e + \frac{a_i}{\sin e + c_i}}$$

где e —высота места, индексы i соответствуют гидростатической (h) или влажной (w) компоненте.

Коэффициенты a_w и a_h вычисляются интерполяцией на сетке данных файла gpt2_5.grd с использованием кубической интерполяции. Коэффициент c_h вычисляется по формуле:

$$c_h = c_{0h} + \left(\left(\cos \left(\frac{DOY}{365.25} \pi + p_h \right) + 1 \right) \frac{c_{11h}}{2} + c_{10h} \right) (1 - \cos \phi)$$

где *DOY* — число суток от опорной эпохи 28 января 1980 г., прочие коэффициенты приведены в таблице 22.

Таблица 1 – Коэффициенты для вычисления картирующих функций

Коэффициент	Значение
c_{0h}	0.062
p_h	0 в сев.полушарии, π в южном
c _{11h}	0.005 в сев.полушарии 0.007 в южном
c _{10h}	0.001 в сев.полушарии 0.002 в южном
b_h	0.0029
b_w	0.00146
c_w	0.04391

Значения картирующих функций G_e (в восточном направлении) и G_n (в северном направлении) для азимута a и высоты места e для атмосферных градиентов вычисляются по формуле Херринга:

$$M_g(e) = \frac{1}{(\sin e \tan e + 0.0031)}$$

Итоговое значение задержки по лучу зрения вычисляется по следующей формуле:

$$D(e) = M_h(e)ZPD_h + M_w(e)ZPD_w + M_q(e)[G_N \cos \alpha + G_E \sin \alpha]$$

Значения зенитной влажной задержки ZPD_w и атмосферных градиентов G_N и G_E является параметром, определяемым из наблюдений. Значение зенитной гидростатической задержки ZPD_h вычисляется по формуле Саастамойнена или также определяется из наблюдений.

Модель учета влияния среды распространения в оптическом диапазоне

Учет влияния среды распространения в атмосфере в оптическом диапазоне включает моделирование зенитной задержки и использование картирующей функции. Тропосферная задержка состоит из двух частей — влажной составляющей и сухой (гидростатической).

Гидростатическая задержка d_h^z вычисляется по следующей формуле:

$$d_h^z = 0.002416579 \frac{f_h(\lambda)}{f_s(\phi, H)} P_s$$

где $f_s(\phi, H) = 1 - 0.00266 \cos 2\phi - 0.00000028H$,

 ϕ – геодезическая широта пункта, H – геодезическая высота станции (м).

Уравнение дисперсии для гидростатической компоненты выглядит следующим образом:

$$f_h(\lambda) = 0.01 \left(k_1^* \frac{k_0 + \sigma^2}{(k_0 - \sigma^2)^2} + k_3^* \frac{k_2 + \sigma^2}{(k_2 - \sigma^2)^2} \right) C_{CO2}$$

Для влажной компоненты используется следующая формула:

$$d_{nh}^{z} = 10^{-4} (5.316 f_{nh}(\lambda) - 3.759 f_{h}(\lambda)) \frac{e_{s}}{f_{s}(\phi, H)}$$

где e_s — давление водяного пара на поверхности в гПа, а $f_{nh}(\lambda)$ - формула дисперсии для негидростатической компоненты:

$$f_{nh}(\lambda) = 0.003101(\omega_0 + 3\omega_1\sigma^2 + 3\omega_2\sigma^4 + 3\omega_3\sigma^6)$$

где
$$\omega_0 = 295.235$$
, $\omega_1 = 2.6422 \text{ мкм}^2$, $\omega_3 = -0.032380 \text{ мкм}^4$, $\omega_3 = 0.004028 \text{ мкм}^6$.

Задержка для сигнала на угле e вычисляется умножением полной зенитной задержки на значение картирующей функции m(e), которая задается следующим образом:

$$m(e) = \frac{1 + \frac{a_1}{1 + \frac{a_2}{1 + a_3}}}{\sin e + \frac{a_1}{\sin e + \frac{a_2}{\sin e + a_3}}}$$

Указанные коэффициенты $a_{\{1,2,3\}}$ вычисляются следующим образом:

$$a_i = a_{i0} + a_{i1}t_s + a_{i2}\cos\phi + a_{i3}H$$

где t_s — температура на станции в градусах Цельсия, а H — геодезическая высота. Коэффициенты а a_{ii} задаются в таблице 23:

Таблица 2 – Коэффициенты для картирующей функции для оптической задержки

a ₁₀	(12100.8±1.9)×10 ⁻⁷
a ₁₁	(1729.5±4.3)×10 ⁻⁹
a ₁₂	(319.1±3.1)×10 ⁻⁷
a ₁₃	(-1847.8±6.5)×10 ⁻¹¹
a ₂₀	(30496.5±6.6)×10 ⁻⁷
a ₂₁	(234.6±1.5)×10 ⁻⁸

a ₂₂	$(-103.5\pm1.1)\times10^{-6}$
a ₂₃	$(-185.6\pm2.2)\times10^{-10}$
a ₃₀	(6877.7±1.2)×10 ⁻⁵
a ₃₁	(197.2±2.8)×10 ⁻⁷
a ₃₂	(-345.8±2.0)×10 ⁻⁵
a ₃₃	(106.0±4.2)×10 ⁻⁹